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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-149

EQUATIONS AND CHARTS FOR
DETERMINING THE HYPERSONIC STABILITY DERIVATIVES OF
COMBINATIONS OF CONE FRUSTUMS COMPUTED BY
NEWTONIAN IMPACT THEORY

j By Lewis R. Fisher
SUMMARY

Equations and charts are presented from which the Newtonian impact
theory values of the stability derivatives of cone frustums may be deter-
mined for small angles of attack. A procedure is also shown by means of
which the coefficients for a missile shape, which is made up of more than
one cone frustum or a spherical nose together with one or more cone frus-
tums, can be estimated by impact theory.

INTRODUCTION

The configurations of missiles very often are formed by joining two
or more cone frustums end to end. As a first approximation, the stability
derivatives at hypersonic velocities for such missile shapes may be esti-
mated from Newtonian impact theory. In view of the simple geometric char-
acteristics of cone frustums, design charts appear to be a convenient
method for estimating the Newtonian coefficients for frustums either sepa-
rately or combined to form a complete missile. The purpose of the present
paper is to develop such charts for angles of attack approaching O° and to
give examples of their application for specific missile configurations.

SYMBOLS

a smallest diameter of frustum of right circular cone

Normal force

| Cy normal-force coefficient,

\ 1 2
- 5 pvVeS



pitching-moment coefficient, Pitching moment

1l 2
> pVeSd

pressure coefficient, Pressure differential
1 y2

5o
Axial force

1 2
= pV<8
5 P

axial-force coefficient,

reference diameter; the largest diameter of cone frustum or
missile

length of frustum or missile
angular pitching velocity
radius of spherical nose

radius of body as function of x (for a cone,
R(x) = x tan 8)

2
reference area, xd-

N

free-stream velocity
component of free-stream velocity normal to surface of body

distance rearward from origin of axes

distance of moment reference point rearward from nose of body

distance of nose of body rearward from origin of axes
distance of base of body rearward from origin of axes

distance of moment reference point rearward from origin of
axes

angle of attack

semiapex angle of cone frustum

-~ &\
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A taper ratio of cone frustum, a/d

o mass density of air

w angular coordinate in cross-sectional plane of body (see
fig. 1)

B 1
. Cy
bN =

SN INCE:
2V/]q =0

~'6C .

Cny = | 7aay

t G
_\2V/{4 -0

Subscripts:

I, 1I, III refers to frustum (see fig. 1)

£

1 3 wra a2 e oY
erivative for a conical

the conical surface,

The symbols (s), (f), or (t) following the
frustum denote, respectively, the contribution o
of the front face, or the total derivative.

H

ANALYSIS

Basic Components

Surface of cone frustum.- The equations for normal-force, axial-

force, and pitching-moment coefficients derived in reference 1 and spplied
to the conical surface of the frustums of right circular cones for angles
of attack smaller than the semiapex angles of the cones are



*p /2 )
Cy = -%fxn R(x)dxf_n/2 Cp sin @ aw
*p n/2
Cy = %f R(x)tan 6 dx Cp dw > (1)
Xp -n/2
2 [° 2 n/2 ,
Cn = &5 [kx - xO>R(x) + tan 8 R (x{]dx a2 Cp sin w dw
J

where x, and X, are the distances from the origin of axes to the
front face and to the base, respectively.

The assumption basic to the Newtonian theory is that when the air-
stream strikes a solid surface exposed to the flow, it loses the compo-
nent of momentum normal to the surface and moves along the surface with
the tangential component of momentum unchanged. The Newtonian pressure
coefficient Cp is given by

2
VN

C, =2 2. (2)
p V2

where the normal component of velocity is given in reference 1 as

Vy =V cos a(sin 6 - tan o sin w cos 8)

- q sin w[ﬁx - xo)cos 6 + R(x)sin 9] (3)

It should be noted that equations (1) are not limited specifically to
cones but apply equally as well to any body of revolution which has its
total surface area between x;,; and X exposed to the airstream. For

a cone, since R(x) = x tan 8, the stability derivatives resulting from
equations (1) for angles of attack approaching zero become

N Fu
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~, CN = E—’E sin29 f x dx
o S Xp
C =0
ch,

&

X
b
Ly . 2 [ 2
_§31n6L x(x-xo)+xtanedx
n

> ()

X
b
Cy = % sin26f x[(x - xo) + X tanee]dx
d X
C =0
Xq
8x o, [P 2
Cmq=_—25in ef x[(x-xo> + X tan G]dx
sd X,

J

Because the axial-force derivatives due to both angle of attack and
pitching are zero by the Newtonian theory, the axial-force coefficient
Cx will be discussed hereafter rather than the derivatives. The axial-

force coefficient (for a =0 and q = 0) is given by:

.
x
b
Y Cyx = B;’—r sin20 tane [‘ x dx (La)
3 3 an
R(x)
< Xns» Xo 6
A=2
d
-

- Sketch (a)




The stability derivativesl for the sloped sides of a cone frustum, denoted
by the symbol (s), are obtained by performing the integrations of equa-
tions (4) within the limits shown in sketch (a). It may be noted that

the center-of-gravity location is being taken at the front face of the
frustum such that xg = xp. The following equations result:

~

CNa(s) =2 cosge(l - X2>

Cy(s) = 2 sin?e(1 - xg)

Cma(s) = - g—zig—g{é(l - %5) - 3\ cosee(l - %Ei] (5)

CNq(S) = S—ti—l:l—e[Q(l - ?\5) - 3\ 00829(1 - 7\2):|

Cmq(s) = - g—;%;§g(A cost® + B cos26 + C)’

where . )

A= 621 - 22)
B--8\(1-2)¢ (5a)
¢ =3(1 %)

Equations (5) are for the coefficients based on the base area of the

cone frustum as the reference area and the base diameter as the reference
length. The moment reference point for the Cmu’ Cy , and Cmq equa-
q

tions is the front face of the cone frustum. For a full cone the taper
ratio A 1is, of course, zero. Of possible use in simplifying computa-
tions are the following relationships shown by equations (5):

Cy, () + Cx(s) = 2(1 - 22)

(6)
CNq(s) = -ECma(s)

1
The stability derivatives due to vertical acceleration (%%) are

shown in reference 1 to be equal to zero by the Newtonian theory; there-
fore, these derivatives are not considered in the present analysis.

- fan o
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Front face of cone frustum.- The flat face of the cone frustum has
certain stability derivatives of its own when it is exposed to the air-
stream, These contributions may be found from equations (5) by allowing
A to go to zero and 6 to 90°. When referenced to the base area and
base diameter of the cone frustum, the Newtonian values of the stability
derivatives due to the front face are:

CNa(f) =0
Cy(£) = 2a°
(£) =0
g () 0 (7)
ch(f) =0
_
Cmq(f) T2

For a flat plate which is perpendicular to the airstream, Cy =2 and
1
C = - =,

Total derivatives for a cone frustum.- The total derivative may now
be written by adding equations (5) and (7):

~

Oy (t) = 2 cos?e(1 - »?)

Cy(t) = 2[sin29(l 228) 4 xe]

Crna(t) = - 3—1;_1;1‘1—6—[2(1 - 7\5> - 3A COSge (l - 7\2):] & (8)
2 3
CNq(t) = m[g(l - 22) - 3\ cos?e(L - )@)]
4 2 4
Cmq(t) = - g—;izgg(A cos '8 + B cos“6 + C) - %f

The factors A, B, and C are given by equations (5a).



Cylinders.- A cylinder may be considered to be a special case of a
cone frustum for which 6 = 0° and A = 1. Because the upper surface
of a cylinder at an angle of attack is not exposed to the airstream, the
integrations of the pressure coefficients in equations (1) should be

made within the limits 0 2w 2 - %. Reference 2 contains a comprehen-
sive discussion of the normal force on a cylinder at supersonic speeds
and shows that the normal force derived from impact theory is propor-
tional to sina and that the axial force is zero. The integrations
of equations (1) when applied to a cylinder give the result that the
derivatives CNG(S), Cx(s), Cma(s), CNq(s), and Cmq(s) for a
cylinder are all equal to zero.

Spherical nose shapes.- In many cases the shape of a missile nose

may be approximated more closely by a portion of a sphere than by a coni-

cal frustum.
R(x) The Newtonian values of the

A stability derivatives for portions
of a sphere were obtained from equa-

—— tions (1) by substitution of the
| ‘ ) relationships

, l R(x) = [x(Er - x)]l/2
» 1 X

sin 8 = 1 - (x/r)

X

E——— |

, cos 8 = [kx/r)(2 - x/r)]l/2

"J and by performing the integrations
b ], —] from x, =0 +to Xy = 1. In this

derivation, X5 = Xeg, T 1s the

Sketch (b) radius of curvature of the spherical
portion, and 6 = tan~t %% as shown

in sketch (b). The equations which result are:

~ U
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where

- @6 -2) .

To base these derivatives on the maximum cross-sectional area and maximum
diameter of the spherical segment, use

S = ﬂrQH
w'
a = ornt/2
whereupon the following equations result when Xeg is taken as zero:
C =
N, = B
2 N
1 1
Cy = (;) 2(r) + 2
- . 1ygl/e 1
Cp, = -3 8 } (10)
oy _ gi/2
q
" - - x
Cmq - 2
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0f interest is the fact that the damping-in-pitch coefficient Cmq of

a spherical segment when it is based on its own base area and diameter
is constant regardless of the length of the segment. TFor a hemisphere

(% = l), equations (10) reduce to

CNG =1

Cx =1

Cmu‘=--é-> (11)
CNq =1

Cag = - %

7

Equations (10) can then be used in place of equations (8) in the event
that the nose of the missile is spherical rather than a cone frustum.

Axis transfer equations.- The stability derivatives for a cone frus-
tum may be computed about any point on its axis of symmetry other than
on the front face. For example, the transfer equations for the total
derivative are given by

ch(t) = CNqO(t) -2 fgg CNa(t)
Cg (t) = Cmao(t) * fg—g- Cy_(¢) r (12)
o7
2
_ g Xcg (%
Cmq(t) = cmqo(t) -2 —== cm%(t) * 5 chO(t) 2( 3 ) CNa(t)

4

where the zero subscripted derivatives are computed from equations (8)
about the front face, Xog is the distance measured rearward positively

from the front face, and d 1is the base diameter. The ratio xcg/d
can be written in terms of the length of the cone frustum as

xcg _ Xeg (r - )
d 1 2 tan ©

=1 I—\1n -~
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If, for example, it is desired to transfer the moment derivatives to a
point one-third of the length rearward from the face, then

Xeg (1 -2)
d 6 tan 8

would be used in equations (12). In the case of = spherical segment,

- Bl

Combination of Components

In many cases, missile shapes are derived by the joining of two or
more cone frustums. In the example used herein, three cone frustums are
joined end to end in the manner shown in figure 1. The Newtonian values
of the stability derivatives for such a missile shape may be computed
from the derivatives of the separate cone frustums in three steps:

(1) Computation of derivatives for each frustum separately about
its own face.

(2) Transfer of moment derivatives to a common axis for all three
frustums.

(3) Addition of derivatives for separate frustums with proper regard
for using the same reference aresa and diameter.

Computation of derivatives.- The stability derivatives of the indi-
vidual cone frustums are computed separately from equations (8) or (5),
depending upon whether the total derivative or only the side contribution
is required, or the derivatives may be estimated from the charts presented
herein., The derivatives are given subscripts I, II, or III depending
upon the frustum to which they pertain.

Transfer of axes,- The moment derivatives calculated in step (1) are
transferred to a common axis by means of equations (12). For a missile
made up of three cone frustums, the transfer distance xcg/d for each

frustum is given in terms of 6 and AN by

X X
(%) =£_c_a<c,1+_l_gn+
d/r 2 1 AT ATIMIII

Xeg B xcg) 1
(—3_)11 ) KII[§7T_ ;7294

Xcg) ~ng 1
—= = Mr1I1j{—== - 5 G171
( d /111 d /11 2

-~

GIII>

~

(13)
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where

Gy = —— (13a)

and the subscript n refers to the number of the frustum (I, II, or
ITI). If one portion of the missile should be cylindrical, then for that
portion

1
Gy = 2 -2 (13v)

fo¥
ot

where 1, 1is the numerical length of the cylindrical portion. If the

nose of the missile should be a spherical segment, then

) _ml/2
op = = (ll/EH) (13c)

H
where H 1s given by equation (9a).

Addition of components.- The stability derivatives for the individ-
ual cone frustums are now referred to a common area and diameter, which
in this instance are those for the base of the final frustum of the mis-
sile, and added together:

|
2 2
Cn, = CNa(t)I(AIIxIII) + Cy_(8) g (Aprr)” + CNQ(S)III
2 2
Cx = Cx(t)r(Arrrrr)” + Cx(s)1r(Araz)” + Cx(s) 11

Coy = o (D1(Mr711)” * G () 11(Prrr)® * G (Sdzrr p (W)

Q2
=4
i

CNq(t)I(xIIKIII)3 + CNq(S)II(%III)5 + O (s) g

»
g
I

n
q Cmq(t)I(%II%III)u + Cog(s)ar(Mx) + Cmq(S)III

-

In equations (14), it is important to note that the derivatives for
the first frustum are calculated from equations (8) and include the con-
tributions of the front face, whereas those for the succeeding frustums
are calculated from equations (5) since the forward faces of these por-
tions are shielded from the airflow. Although only in the cases of the
Cx and Cp coefficients do any differences exist between equations (5)

and (8), equations (14) are expressed in parallel fashion for consistency.

3 &\
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PRESENTATION OF RESULTS

Charts are presented in figures 2 to 6 giving the variations as
functions of 6 and A of the stability derivatives for conical frus-
tums calculated by means of equations (8). These are the total deriva-
tives which include both the front-face and conical-surface contributions.
The coefficients are referred to the base area and base diameter of the
frustum and to a moment center at its forward face.

It may be noted that the stability derivatives for all cone frustums
are completely defined as functions of two parameters, the semiapex angle
8 and the taper ratio A. However, the length of the cone frustum (see
sketch in fig. 2, for example) will vary with changes in 6 and A
according to the equation

1 - A

tan 6 = ——
2(1/4)

Thus, for 6 =0 and A equal to values other than unity, the cone
frustum is of infinite length. Caution should be exercised, therefore,
in interpreting the significance of the derivatives for extremely small
values of 6,

In combining cone frustums into missile shapes, CX(t) and Cmq(t)

front face is exposed to the airstream. For the subsequent frustums,
however, the front faces are shielded from the airstream, and CX(s) and

for the first frustum must be taken from figures 3 and 6 because the

Cmq(s) must be used. These derivatives, computed from the relationships

given in equations (5) are presented as functions of 6 and A\ in
figures 7 and 8.

For illustrative purposes, the effects of shifting the moment refer-
ence point rearward one-third the length of the frustum are shown for
Crg (£) ch(t), and cmq(t) in figures 9, 10, and 11.

The stability derivatives for spherical segments which may be used
as missile noses are presented in figure 12, These coefficients were

computed by means of equations (10) for the condition xcg = 0 and are

based on the base area S and base diameter d of the spherical sector.

A representative missile shape was assumed to be made up of three
cone frustums joined end to end in the manner shown in figure 1. Calcu-
lations were made to determine the trend of the stability derivatives of
the missile as 6 and A were varied separately for each of the three
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cone frustums. The results of these calculations are presented in fig-

ures 13 to 18. The coefficients are based on the area and diameter of

the base of the third frustum and are referred to a moment reference

point one-half the length of the entire missile rearward from the nose.

It should be noted that as 6 or A was varied for any of the frustums

which form the missile shape, the mgment reference point was also shifted
cg _ 1

by virtue of the restriction that T = 5

If one portion of a missile which 1s cylindrical should be followed
by a conical frustum, then part of the upper surface of the frustum will
be shielded from the air flow by the cylinder which precedes it at an
angle of attack. Because the results herein are presented for angles of
attack which approach zero, however, it is felt that any error associated
with the shielding effect will be small. In addition, the effects of
centrifugal forces in the flow around bodies of revolution have been
neglected. The results presented may be modified to account for the
difference between the Newtonian pressure coefficient and the theoretical
adiabatic pressure coefficient by the method of reference 3.

CONCLUDING REMARKS

Equations and charts are presented from which the Newtonian impact
theory values of the stability derivatives of cone frustums may be deter-
mined. The charts are intended to present these derivatives for reason-
able values of the length-to-diameter ratioc of conical frustums which may
be used in missile configurations.

A procedure is also given by means of which the stability derivatives
for a missile shape which is made up of more than one cone frustum, or a
spherical nose together with one or more cone frustums, can be estimated
by impact theory.

Langley Research Center,
National Aeronautics and Space Administration,
langley Field, Va., August 12, 1959.
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8,deg

Figure 2.- Total normal-force slope for a cone frustum calculated from
Newtonian theory. The geometric parameters are related by the equa-~

1 - A

2(1/a)

tion tan 6 =
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2.2

20

i

Cx(t) 1.2 i

Figure 3.- Total axial-force coefficient for a cone frustum calculated

from Newtonian theory. The geometric parameters are related by the

equation tan 6 =

1l -A

2(1/d)

> -1
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6,deg

Figure k4,- Total static-stability coefficient for a cone frustum calcu-
X
lated from Newtonian theory. —%ﬁ = 0. The geometric parameters are

. 1 -A
related by the equation tan 6 = ——_,
v a .2(1/d)
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Figure 5.- Total normal-force-due-to-pitching coefficient calculated

X
from Newtonian theory. -% = 0. The geometric parameters are related

; 1 -A
by the equation tan 68 = =———~—_,
2(1/a)
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Figure 6.- Tgtal damping-in~-pitch coefficient calculated from Newtonian
theory. —%5 = 0. The geometric parameters are related by the equa-

1-2
2(1/d)

tion tan 6 =
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Figure 7.- Axial-force coefficient due only to the inclined sides of a
cone frustum calculated by Newtonian theory. The geometric parameters

are related by the equation tan 6 =-l—:Jﬁ_.
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Cmq {s).

Figure 8.- Damping-in-pitch coefficient due only to inclined sides of a

X
- cone frustum calculated by Newtonian theory. —(;ﬁ = 0. The geometric

=1 -2

parsmeters are related by the equation tan 8 = .
2(1/4d)
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Figure 9.- Total static-stability coefficient for a cone frustum calcu-

lated from Newtonian theory.
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Figure 13.- Effect on Newtonian coefficients of varying 67 for a mis-

X

sile configuration made up of cone frustums. _‘{_E = %
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Figure lk4.- Effect on Newtonian coefficients of varying 817; for a mis-

sile configuration made up of cone frustums.
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Figure 16.- Effect on Newtonian coefficients of varying A for & mis-

X
sile configuration made up of cone frustums. -%g = %.
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